Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
J Xenobiot ; 14(2): 497-515, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38651380

RESUMO

Hypertensive disorders in pregnancy (HDP) are the most prevalent diseases during pregnancy. In addition to the already identified risk factors, exposure to environmental contaminants has been also considered a new one. Phthalates, which are classified as priority environmental pollutants due to their ubiquitousness and endocrine disrupting properties, have been implicated in HDP in some epidemiological studies. Nevertheless, phthalates' vascular impacts still need to be clarified. Thus, we aimed to understand the connection between phthalates exposure and the occurrence of gestational hypertension, as well as the pathway involved in the pathological vascular effects. We investigated diethyl phthalate's (DEP) effect on the vascular reactivity of the human umbilical arteries (HUAs) from normotensive and hypertensive pregnant women. Both DEP's nongenomic (within minutes effect) and genomic (24 h exposure to DEP) actions were evaluated, as well as the contribution of cyclic guanosine monophosphate and Ca2+ channel pathways. The results show that short-term exposure to DEP interferes with serotonin and histamine receptors, while after prolonged exposure, DEP seems to share the same vasorelaxant mechanism as estrogens, through the NO/sGC/cGMP/PKG signaling pathway, and to interfere with the L-type Ca2+ channels. Thus, the vascular effect induced by DEP is similar to that observed in HUA from hypertensive pregnancies, demonstrating that the development of HDP may be a consequence of DEP exposure.

2.
Opt Express ; 32(6): 10077-10092, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571228

RESUMO

Every year, millions of people suffer some form of illness associated with the consumption of contaminated food. Escherichia coli (E. coli), found in the intestines of humans and other animals, is commonly associated with various diseases, due to the existence of pathogenic strains. Strict monitoring of food products for human consumption is essential to ensure public health, but traditional cell culture-based methods are associated with long waiting times and high costs. New approaches must be developed to achieve cheap, fast, and on-site monitoring. Thus, in this work, we developed optical fiber sensors based on surface plasmon resonance. Gold and cysteamine-coated fibers were functionalized with anti-E. coli antibody and tested using E. coli suspensions with concentrations ranging from 1 cell/mL to 105 cells/mL. An average logarithmic sensitivity of 0.21 ± 0.01 nm/log(cells/mL) was obtained for three independent assays. An additional assay revealed that including molybdenum disulfide resulted in an increase of approximately 50% in sensitivity. Specificity and selectivity were also evaluated, and the sensors were used to analyze contaminated water samples, which verified their promising applicability in the aquaculture field.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Animais , Humanos , Ressonância de Plasmônio de Superfície/métodos , Escherichia coli , Fibras Ópticas , Técnicas Biossensoriais/métodos , Imunoensaio
3.
Chemosphere ; : 141908, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615948

RESUMO

Rare earth elements (REEs) are increasingly being studied mainly due to their economic importance and wide range of applications, but also for their rising environmental concentrations and potential environmental and ecotoxicological impacts. Among REEs, neodymium (Nd) is widely used in lasers, glass additives, and magnets. Currently, NdFeB-based permanent magnets are the most significant components of electronic devices and Nd is used because of its magnetic properties. In addition to REES, part of the environmental pollution related to electrical and electronic equipment, fluorescent lamps and batteries also comes from mercury (Hg). Since both elements persist in ecosystems and are continuously accumulated by marine organisms, a promising approach for water decontamination has emerged. Through a process known as sorption, live marine macroalgae can be used, especially Ulva lactuca, to accumulate potential toxic elements from the water. Therefore, the present study aimed to evaluate the cellular toxicity of Nd and Hg in Mytilus galloprovincialis, comparing the biochemical effects induced by these elements in the presence or absence of the macroalgae U. lactuca. The results confirmed that Hg was more toxic to mussels than Nd, but also showed the good capability of U. lactuca in preventing the onset of cellular disturbance and homeostasis disruption in M. galloprovincialis by reducing bioavailable Hg levels. Overall, the biochemical parameters evaluated related to metabolism, antioxidant and biotransformation defences, redox balance, and cellular damage, showed that algae could prevent biological effects in mussels exposed to Hg compared to those exposed to Nd. This study contributes to the advancement of knowledge in this field, namely the understanding of the impacts of different elements on bivalves and the crucial role of algae in the protection of other aquatic organisms.

4.
J Hazard Mater ; 471: 134220, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38636232

RESUMO

The presence in marine shellfish of toxins and pollutants like rare earth elements (REEs) poses a major threat to human well-being, coastal ecosystems, and marine life. Among the REEs, neodymium (Nd) stands out as a widely utilized element and is projected to be among the top five critical elements by 2025. Gymnodinum catenatum is a phytoplankton species commonly associated with the contamination of bivalves with paralytic shellfish toxins. This study evaluated the biological effects of Nd on the mussel species Mytilus galloprovincialis when exposed to G. catenatum cells for fourteen days, followed by a recovery period in uncontaminated seawater for another fourteen days. After co-exposure, mussels showed similar toxin accumulation in the Nd and G. catenatum treatment in comparison with the G. catenatum treatment alone. Increased metabolism and enzymatic defenses were observed in organisms exposed to G. catenatum cells, while Nd inhibited enzyme activity and caused cellular damage. Overall, this study revealed that the combined presence of G. catenatum cells and Nd, produced positive synergistic effects on M. galloprovincialis biochemical responses compared to G. catenatum alone, indicating that organisms' performance may be significantly modulated by the presence of multiple co-occurring stressors, such those related to chemical pollution and harmful algal blooms. ENVIRONMENTAL IMPLICATIONS: Neodymium (Nd) is widely used in green technologies like wind turbines, and this element's potential threats to aquatic environments are almost unknown, especially when co-occurring with other environmental factors such as blooms of toxic algae. This study revealed the cellular impacts induced by Nd in the bioindicator species Mytilus galloprovincialis but further demonstrated that the combination of both stressors can generate a positive defense response in mussels. The present findings also demonstrated that the impacts caused by Nd lasted even after a recovery period while a previous exposure to the toxins generated a faster biochemical improvement by the mussels.

5.
Environ Res ; 252(Pt 1): 118756, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552830

RESUMO

The evaluation of the ecotoxicological effects of the effluent after treatment with peracetic acid is relevant to help establish reference concentrations for the disinfection process and waste recovery. Therefore, the objective of this work was to evaluate the ecotoxicity of effluent from a bovine slaughterhouse treated with peracetic acid on Girardia tigrina. The toxicity bioassays for planaria were the acute test (LC50) and chronic assays: locomotion, regeneration, reproduction and fertility. The results showed that the effluent treated with peracetic acid showed less toxicity than the effluent without application of peracetic acid. The effluent after peracetic acid application showed a chronic toxic effect in the reduction of locomotor speed in all studied disinfectant concentrations (0.8, 1.6, 3.3 and 6.6 µg L-1 of peracetic acid) and a delay in the formation of G. tigrina photoreceptors at the concentration of 6.6 µg L-1 of peracetic acid. Peracetic acid concentrations of 0.8, 1.6 and 3.3 µg L-1 were not toxic for blastema regeneration, photoreceptor and auricle formation, fecundity and fertility. In addition, this study assists in defining doses of peracetic acid to be recommended in order to ensure the wastewater disinfection process without causing harm to aquatic organisms.

6.
Nanoscale Adv ; 6(3): 826-831, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38298581

RESUMO

Because of its properties, silver is among the most used metals both as salt and as nanomaterials (NMs), hence reaching the environment. Multigenerational (MG) exposure testing is scarce, and especially so for NMs and soil invertebrates. In this study the MG effects of Ag NMs (Ag NM300K) and Ag salt (AgNO3) were assessed, using Enchytraeus crypticus in LUFA 2.2 soil. Survival, reproduction and internal Ag concentration in the animals were measured throughout 7 generations (5 generations (F0-F4) in spiked soil plus 2 (F5-F6) in clean soil) exposed to sublethal concentrations corresponding to the reproduction EC10 and EC50 obtained in standard toxicity tests (45 and 60 mg Ag per kg soil DW for AgNO3; 20 and 60 mg Ag per kg soil DW for Ag NM300K). MG exposure caused a dose-related decrease in reproduction for both Ag forms. Ag uptake peaked in the F1 (64 days) for AgNO3 and F2 (96 days) for Ag NM300K, after which it decreased. In agreement with toxicokinetic studies, a maximum body Ag concentration was reached (20 mg Ag per kg body DW (AgNO3) and 70 mg Ag per kg body DW (Ag NM300K)) and after which detoxification mechanisms seem to be activated with elimination of Ag accompanied by a decrease in reproduction. Transfer to clean soil allowed Ag to be (fully) eliminated from the animals. This MG study confirmed the effects determined in standard reproduction toxicity tests but further allowed to monitor the dynamics between exposure and effects of the Ag materials, and how the animals seem to cope with Ag for 7 generations by compensating between detoxification and reproductive output.

7.
Sci Total Environ ; 915: 169754, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163599

RESUMO

The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 µg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 µg/L) and glutathione reductase (at 80 µg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 µg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Estresse Oxidativo , Biotransformação , Európio , Poluentes Químicos da Água/análise , Biomarcadores/metabolismo
8.
Chemosphere ; 351: 141168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215828

RESUMO

The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Térbio/metabolismo , Térbio/farmacologia , Salinidade , Ecossistema , Poluentes Químicos da Água/análise , Estresse Oxidativo , Mytilus/metabolismo
9.
Mar Environ Res ; 195: 106365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295610

RESUMO

Climate change (CC) induces significant worldwide alterations in salinity and temperature, impacting ecosystems and their services. Marine organisms, susceptible to these changes, may experience modified vulnerability to anthropogenic contaminants, including rare-earth elements (REEs) such as yttrium (Y) derived from electronic waste. This study investigated the influence of temperature and salinity changes on the impacts of Y in Mytilus galloprovincialis mussels. Organisms were subjected to Y (0 and 10 µg/L) for 28 days under three salinity scenarios (20, 30 (control), and 40, at a control temperature of 17 °C) or to two temperatures (17 and 22 °C, at the control salinity of 30). Under these conditions, Y bioaccumulation and different biomarkers were evaluated. Results showed that salinity and temperature did not affect Y accumulation, indicating effective detoxification mechanisms and physiological adaptations in the exposed organisms. However, in Y-exposed mussels effects were intensified under decreased salinity, evidenced by increased metabolism, defense enzyme activities, and acetylcholinesterase (AChE) levels. Similar responses occurred under heat stress with enhanced metabolic capacity, AChE activity, and activation of defense mechanisms such as glutathione S-transferases. These defense mechanisms mitigated cellular damage caused by Y, but under the highest temperature and especially lower salinity, Y-exposed mussels exhibited increased oxidative stress and decreased efficiency of activated defense enzymes, resulting in cellular damage compared to their uncontaminated counterpart. The present study sheds light on the effects that interactions between temperature, salinity, and the presence of emerging contaminants like REEs may have on marine organisms. Such assessments are crucial for developing effective strategies to mitigate the impacts of CC and protect the long-term health and resilience of marine ecosystems.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Temperatura , Ítrio/metabolismo , Salinidade , Acetilcolinesterase , Ecossistema , Poluentes Químicos da Água/análise , Estresse Oxidativo , Biomarcadores/metabolismo , Mytilus/fisiologia
10.
Mar Pollut Bull ; 198: 115831, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056287

RESUMO

In the present study, the seasonal concentration of seven trace elements was investigated in sediment and the cockle Cerastoderma glaucum tissues from two port areas in the North-East and South of Tunisia comparing cockles non-parasitized (NP) and parasitized (P) with digenean parasites. Elements concentration in sediments analyzed in both sites revealed that Zinc (Zn), Chromium (Cr), and Lead (Pb) were the most abundant ones, while Cadmium (Cd) and Mercury (Hg) were less abundant. The bioaccumulation of trace metals and Arsenic (As) in the tissues of cockles seems to be modulated by both the infection state and the parasite species. The relationship between bioaccumulation of metals and As, trematode species and abiotic parameters showed that the availability of certain metals for uptake by P cockles of both sites was influenced by the salinity and temperature of the water. Our results corroborate the possibility of using digenean infecting bivalves in biomonitoring aquatic ecosystems.


Assuntos
Arsênio , Cardiidae , Mercúrio , Metais Pesados , Parasitos , Oligoelementos , Poluentes Químicos da Água , Animais , Ecossistema , Bioacumulação , Monitoramento Ambiental/métodos , Cádmio/análise , Mercúrio/análise , Arsênio/análise , Poluentes Químicos da Água/análise , Metais Pesados/análise
11.
Sci Total Environ ; 912: 169190, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38092204

RESUMO

The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Humanos , Alcaloides/toxicidade , Alcaloides/metabolismo , Cafeína/toxicidade , Cafeína/metabolismo , Indóis/metabolismo , Indóis/toxicidade , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
12.
Environ Sci Pollut Res Int ; 30(54): 116120-116133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910362

RESUMO

Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 µg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Aquecimento Global , Gadolínio , Mytilus/metabolismo , Poluentes Químicos da Água/análise , Estresse Oxidativo , Biomarcadores/metabolismo
13.
Environ Toxicol Pharmacol ; 104: 104314, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37979633

RESUMO

Pharmaceutical active compounds (PhACs) have raised concerns in the last decade due to their increased consumption and inadequate elimination during discharge, resulting in their introduction into water systems and potential significant threats to non-target organisms. However, few studies have investigated the sublethal impacts of PhAC exposure on marine invertebrates. Thus, the present study aimed to assess tissue-specific responses in Mytilus galloprovincialis to sodium lauryl sulfate (SLS), salicylic acid (SA), and caffeine (CAF) (4.0 mg/L, 4.0 mg/L and 2.0 µg/L, respectively). Short-term in vitro exposures with mussel digestive gland and gill tissues were conducted and biochemical responses related to antioxidant and detoxification capacity, cellular damage and neurotoxicity were assessed. The present results clearly showed significant differences in tissue sensitivity and biochemical responses to the contaminants tested. This study highlights the suitability of filter-feeder species as valuable model organisms for studying the sublethal effects of unintended environmental exposures to PhACs.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/farmacologia , Exposição Ambiental , Organismos Aquáticos/metabolismo , Preparações Farmacêuticas , Poluentes Químicos da Água/análise , Brânquias , Biomarcadores/metabolismo , Estresse Oxidativo
14.
Toxics ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999570

RESUMO

The world population is experiencing colossal growth and thus demand for food, leading to an increase in the use of pesticides. Persistent pesticide contamination, such as carbendazim, remains a pressing environmental concern, with potentially long-term impacts on aquatic ecosystems. In the present study, Daphnia magna was exposed to carbendazim (5 µg L-1) for 12 generations, with the aim of assessing gene transcription alterations induced by carbendazim (using a D. magna custom microarray). The results showed that carbendazim caused changes in genes involved in the response to stress, DNA replication/repair, neurotransmission, ATP production, and lipid and carbohydrate metabolism at concentrations already found in the environment. These outcomes support the results of previous studies, in which carbendazim induced genotoxic effects and reproduction impairment (increasing the number of aborted eggs with the decreasing number of neonates produced). The exposure of daphnids to carbendazim did not cause a stable change in gene transcription between generations, with more genes being differentially expressed in the F0 generation than in the F12 generation. This could show some possible daphnid acclimation after 12 generations and is aligned with previous multigenerational studies where few ecotoxicological effects at the individual and populational levels and other subcellular level effects (e.g., biochemical biomarkers) were found.

15.
Toxics ; 11(11)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37999591

RESUMO

Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels' digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure.

16.
Aquat Toxicol ; 264: 106726, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806024

RESUMO

Basamid® is a fumigant nematicide and fungicide known to break down in several volatile compounds, mainly methyl isothiocyanate (MITC), when in contact with water. Soil abiotic parameters, such as pH, influences this breakdown process, and thus, the toxic effects of Basamid® to aquatic biota. This work studied the influence of soil pH (5.5, 6.5 and 7.5) on the toxicity of eluates (1:4, m:v), obtained from Basamid®-contaminated soils (with the recommended dose of 145 mg of dazomet/Kg of soil), on two primary consumers: Daphnia magna and Brachionus calyciflorus. For this, lethal and sublethal toxicity of eluates originated from soils at pH 5.5, 6.5 and 7.5, contaminated with Basamid® (Ba-E 5.5; 6.5 and 7.5, respectively), were assessed (dilutions between 0.096 - 100%). The LD50,24h of Basamid® eluates for D. magna varied from 3.07% to 7.82% (Ba-E 6.5 and Ba-E 5.5 respectively), while for B. calyciflorus varied from 18.1% to 84.7% (Ba-E 6.5 and Ba-E 7.5, respectively). Both species were less sensitive to Basamid® eluates originated from soils with pH 7.5 and more sensitive to those obtained from soils with pH 6.5. Regarding the sublethal effects, a lower soil pH was associated with a higher toxicity of Basamid® to D. magna reproduction (LOED: 0.125% Ba-E 5.5), while for B. calyciflorus such a higher toxicity was observed at the highest soil pH (ED20: 7.42% [5.10-9.74] at Ba-E 7.5). These results show a negative association between soil pH and the lethal toxicity of Basamid® contaminated eluates. However, such a pattern was not observed at sublethal level, at which a species dependency was observed regarding the influence of soil pH in the observed toxicity. Nevertheless, it is to highlight that very low concentrations of eluates (as 3.07%) caused significant mortality, indicating a high risk for freshwater biota. Considering that Basamid® is likely to reach the aquatic systems is real, for which reason the recommended dose must be reviewed at environmentally-relevant scenarios.


Assuntos
Praguicidas , Rotíferos , Poluentes Químicos da Água , Animais , Solo/química , Poluentes Químicos da Água/toxicidade , Praguicidas/farmacologia , Concentração de Íons de Hidrogênio , Daphnia
17.
Chemosphere ; 340: 139904, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611763

RESUMO

Phthalates are classified as priority environmental pollutants, since they are ubiquitous in the environment, have endocrine disrupting properties and can contribute to impaired health. Used primarily in personal care products and excipients for pharmaceuticals, diethyl phthalate (DEP) is a short-chain alkyl phthalate that has been linked to decreased blood pressure, glucose tolerance, and increased gestational weight gain in humans, while in animals it has been associated with atherosclerosis and metabolic syndrome. Although all these findings are related to risk factors or cardiovascular diseases, DEP's vascular impacts still need to be clarified. Thus, performing ex vivo and in vitro experiments, we aimed to understand the vascular DEP effects in rat. To evaluate the vascular contractility of rat aorta exposed to different doses of DEP (0.001-1000 µM), an organs bath was used; and resorting to a cell line of the rat aorta vascular smooth muscle, electrophysiology experiments were performed to analyse the effects of a rapid (within minutes with no genomic effects) and a long-term (24 h with genomic effects) exposure of DEP on the L-type Ca2+ current (ICa,L), and the expression of several genes related with the vascular function. For the first time, vascular electrophysiological properties of an EDC were analysed after a long-term genomic exposure. The results show a hormetic response of DEP, inducing a Ca2+ current inhibition of the rat aorta, which may be responsible for impaired cardiovascular electrical health. Thus, these findings contribute to a greater scientific knowledge about DEP's effects in the cardiovascular system, specifically its implications in the development of electrical disturbances like arrhythmias and its possible mechanisms.


Assuntos
Doenças Cardiovasculares , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ácidos Ftálicos , Humanos , Animais , Ratos , Ácidos Ftálicos/toxicidade , Aorta
18.
Sci Total Environ ; 902: 166085, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549702

RESUMO

Nowadays, it is of utmost importance to consider climate change factors, such as ocean warming, since the risk of negative impacts derived from increased surface water temperature is predicted to be high to the biodiversity. The need for renewable energy technologies, to reduce greenhouse gas emissions, has led to the increasing use of rare earth elements (REEs). Dysprosium (Dy) is widely used in magnets, motors, electrical vehicles, and nuclear reactors, being considered a critical REE to technology due to its economic importance and high supply risk. However, the increasing use of this element contributes to the enrichment of anthropogenic REEs in aquatic systems. Nevertheless, the information on the potential toxicity of Dy is limited. Moreover, the effects of pollutants can be amplified when combined with climate change factors. Thus, this study aimed to assess the effects of Dy (10 µg/L) in the species Mytilus galloprovincialis under actual (17 °C) and predicted warming conditions (21 °C). The Dy concentration in contaminated mussels was similar between temperatures, probably due to the detoxification capacity in individuals under these treatments. The combined stressors affected the redox balance, but higher impacts were caused by Dy and warming acting alone. In terms of cellular damage, although Dy acting alone was prejudicial to mussels, warming and both stressors acting together induced higher levels of LPO and PC. The histopathological effects of Dy in the digestive tubules were independent of the temperature tested. Regarding effects on sperm, only warming induced cellular damage, while both stressors, alone and together, impaired sperm movement. Overall, this study highlights that warming might influence the effects induced by Dy, but greater impacts were caused by the element. Eventually, the tested stressors may have consequences on mussels' reproduction capacity as well as their growth, abundance, and survival.


Assuntos
Resíduo Eletrônico , Mytilus , Poluentes Químicos da Água , Masculino , Humanos , Animais , Temperatura , Estresse Oxidativo , Poluentes Químicos da Água/análise , Sêmen , Espermatozoides
19.
Sci Total Environ ; 904: 166232, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574074

RESUMO

Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Plásticos/análise , Microplásticos , Máscaras , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Biodegradação Ambiental
20.
Aquat Toxicol ; 261: 106629, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37459717

RESUMO

Lithium (Li) is present in many modern technologies, most notably in rechargeable batteries. Inefficient recycling strategies for electronic waste containing this element may result in its release into aquatic systems, which may induce harmful effects on wildlife. The present study evaluated the effect of Li contamination on the gastropod Tritia reticulata exposed to different concentrations of Li (100, 200, 500 and 1000 µg L-1) for 21 days. Biochemical analyses showed that this species was not significantly affected by this contaminant at the cellular level, as no significant differences were observed in terms of metabolism, oxidative stress, and neurotoxicity. Results further revealed that snails attempted to avoid Li accumulation by burying in the sediment at a faster rate when exposed to the highest concentrations (500 and 1000 µg L-1). More research is needed to fully assess the response of T. reticulata to Li contamination, such as investigating longer exposure periods or other endpoints.


Assuntos
Lítio , Poluentes Químicos da Água , Animais , Lítio/toxicidade , Lítio/metabolismo , Poluentes Químicos da Água/toxicidade , Caramujos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...